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CONDITIONS FOR A SUM OF FORMS TO BE OF FIXED SIGN 
AND FOR STABILITY OF MOTION ON MANIFO~S* 

A.B. AMINOV and T.K. SIRAZETDINOV 

Lyapunov's corollary of the Stability Theorem /l/, a special case of 
which is Routh's theorem on tiie stability of the steady motion of a 
system with cyclic coordinates, provides a point of departure for the 
investigation conducted in this paper of the stability of motion on 
manifolds, particularly those defined by the integrals of the equations 
of the perturbed motion. Sufficient conditions are obtained for a sum 
of forms to be positive- or negative-definite and for the motion of 
polynomial systems to be stable on these manifolds. 

1, Given a sum of forms 

F(X)= 2 .W(x, As,...i 1, 
s 

x=(x1,. . .,x,)E&~ 
s=s 

and a manifold M defined by equalities 

p, (X) = B x$’ (x, !Bti,...i,) = 07 r=i,z,..., m;m<n* P<P 
8=1 

(f.2) 

where X(‘) (x, Ai ,... <,)y XY (X9 Bvi ,... i,) are multilinear forms of degree s, of the form 

A%, . . ., Q KG,. . .,is are real numbers, P, 4, s, m, n are positive integers, and Rxn is Euclidean 
n-space. Like terms in the forms are reduced and the terms are assumedtobelexieographically 
ordered. 

We shall determine the sufficient conditions for functions (1.1) to be positive-ornegative- 
definite under constraints (1.2). 

Let RN, denote the Euclidean space of vectors y =(y,, . . . . go) and @: R=-+R,N the 
mapping defined as follows: 

y, = x19, y, = slq-'x*, . . ., y, = x1-x* 

. *, YN-n+l=slt 

U-3) 

i.e., yj =5i5i . ..5j. 1* and j 2 ilie. . . i,, where i, < i, < . . . < i,, ti, is, . . ., is = 1, 2, . . ., n; j = 

1, 2, . . ., iv. 
Lemma 1.1. A sUmOf forms F(x) (1.1) defined in &" is mapped by @ (1.3) into a 

certain quadratic form (q.f.1 
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(1.4) 

defined in R,N. 

Proof. Let us assume that the forms in the sum F(x) follow each other in decreasing 
order of their degrees, beginning with a form of degree 2q and ending with a second-degree 
form. We shall show that each term in F(x) can be mapped by a mapping Q, of type (1.3) into 
some monomial of a second-degree q.f. f(Y). 

We begin with a second-degree term in the function F(x). Using the equalities 

X1=?,&n+l, xZ=#N-~+2'. . “m =YN 
appearing in the mapping (1.31, we see that a q.f. in the sum of forms F fx) is mapped into 
a unique q.f. in the variables YN-n+l,Yi,‘-n+zr ” ‘. YN. 

Consider a third-degree form in F(x). 'Together with the variables ~N-wI’ IN-n+k? ’ . .( Y,.J I 

we use the variables 

When this is done each third-order from in F(x) is mapped into a second-degree term in 
the q.f. f(y). For example, the expression %l%p is mapped into a productofcoordinates 

YN-lvN-n’ But this mapping is not unique, since zn-,z,,* = z,,_,z~z,, also goes into the product 

#N-n-lflN’ 

Note that third-order terms in F(X) may also be mapped into first-order terms, if one 
uses the components of Q, of the form yi = zi,zi,zi. (i, < i, < i,, i,, i,, i, = 1, z,...,n). However, only 
transformations into a quadratic form interest us here. 

Now consider an arbitrary term of order s in F (x) : 
Ai,~.,.+,~<,Z,-zi, . . . 5ib fit < i, < . . . < i,; i,, f,, . . ., i, = 1, . . ., R, 
s = 2g, 2q - 1,. . .( 2) 

We divide the multi-index f,l, . ..i. into two parts: i&...ik and ik+Iik+n . . . i, (1 Q L, < . . 1 6 

ik <, % i < ik+l < . . . f b d n), in such a way that a, preserves the one-to-one correspondence 

i,i, . . * ik t j,, ik+lik+z . . . i, t in 

If one takes k E (i, 2, . . ., qf, (6 - k) E 11, 2, . . ., q1, such a partition is always possible, since 
8 f (2, 3, . . .( 2q). Then any s-th-order term in P(x) is mapped into a corresponding term cjlj,Yj,~j, 
in the q-f. f(y), and hence the sum of forms F(r) is mapped into the q.f. f(Y) * 

As a rule, a transformation of the type described is not unique. 
In order to determine the dependence between the coefficients 

AI,... ~ 
C.f,& and the coefficients 

of F(x), we equate f(g) and F(x): 

(1.5) 

and substitute throughout the values of y,, . . . . yN from (1.3). Equating coefficients of 
like terms on the left and right of (1.5), we obtain a system of linear relationships between 

Clllb and Ai,...ia: 

cjl= A U’ ~1% = AII...,~. . - -2 (f.6) 
w -ST 

Zi 2P (2 - b,jJ c&j, = 

.Ai,...t,v . . ., CNN = A,, 

tidenotes summation over all partitions of multi-indices i,... i, into subindices 

all permutations of i,, . . . . i, that preserve 
is the Kronecker delta. System (1.6) may 

be used to determine cl,)* given Ai,.,.il and conversely, to compute Ail...+ when cj,jp are 
known. 

Lemma 1.2. A function F,(x) (1.2) defined in &w is mapped by @ (1.3) into a linear 
form 

defined in the space AsN. 

Proof. The highest order of terms in the sums of forms (l.Z), which equals the number 
p, is not greater than q@/g). Therefore, apart from coefficients, each term in the func- 
tions F,(X) is equal to some unique coordinate 111 in the mapping (1.3). Consequently, the 
sums of forms G(x) are always mapped by 10 into a linear form (1.7). 
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Equating the linear form f,(y) (1.7) to the function F,(x), 

and substituting the values of y,, . .., yN from (1.3), we obtain 

b,r = P,u...u+ b,z = Bru...mr . . $7 By,= Bri,..,isT * . .> b,N = B, (1.9) 

TIleorem 1.1. A q-f. f(yf (1.4) is positive- or negative-definite on linear manifolds 

M, 

I, (9) = ,ix brjyj = 0, r=i,...,m; m<n (1.20) 

if and only if there exist real numbers aij* 5, satisfying the recurrence relation 

(1.11) 

i = I, 2, . . ., IV; j = i, ii- 1, . . . . N; i>i%> 1, m<N 

and the inequalities 

aii # 0, Vi = 1, 2, . . ., .ni (1.12) 

Proof. Necessity. Assume that f(y) is positive-definite for the values of y,, . .., 
yN SatiSfyi.ng (1.10). Then, by Finsler's theorem /2/, there exists a number h such that the 
q.f. 

PtY)=f(Y)+ha,~~1,2(Y) (1.13) 

is positive-definite. 
In /3/ we establish a test for a q.f. to be of fixed sign, which we now apply to p (Y) 6 

Equate P(y) to a positive-definite q.f. with undetermined coefficients 

(1.14) 

Equating coefficients of like terms on the left and right of (1.141, we find real numbers 

aij satisfying the recurrence relations (1.14) and inequalities (1.12). 

Sufficiency. Suppose there exist real numbers h, ail satisfying formulae (1.11) and 
(1.12). Then, by the above-mentioned test of /3/, the q.f. P(y) of (1.13) is positive- 
definite. Hence it follows that the q-f. f(y) is positive-definite on the linear manifolds 
M, (1.10) where P(y) = f(Y)_ 

Theorem 1.2. A sufficient condition for a sum of forms F(x) to be positive-definite 
on a variety N (1.2) is that there exist real numbers h, ail satisfying the recurrence 
relations (1.11) and inequalities (1.12) in which the numbers cilr rl b satisfy Eqs.(l.G) and 
(l.Q), respectively. 

Proof. Construct a new function from the functions F(x) (1.1) and F, (x) (l-2), as 
follows (h is a real number): 

Q (x) = F (x) + P ~~L’~2 (x) (1.15) 

Apply the mapping @ of (1.3; (;; Q(x). When this is done, the functions F(x) and 

F, (x) are carried into a q.f. (1.4) and a linear form f,(y) (1.7), respectively 
(see Lemmas 1.1 and l-2), so that Q(x) itself is carried into a q.f. P(y) of type (1.13). 

Suppose that the condition of the theorem is satisfied, i.e., the coefficients of the 
functions F(x) and F,(x) determine real numbers cilr b,i such that there-exist a, ai, 
satisfying formulae (1.11) and (1.12). Then, by Theorem 1.1, the q.f. f(y) of (1.4) is 
positive-definite on the linear varieties M, (1.101, and so the q.f. P(y) is also positive- 
definite. It was proved in /4/ that under these conditions the function Q(x) of (1.15) is 
also positive-definite. Since the identity O(x)ss F(x) holds on M (1.21, it follows that 
the sum of forms F(w) is positive definite on EI. 

2. The main theorems of the Lyapunov function method, concerning stability of motion, 
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carry over easily to the case of motion on varieties. We will first present the necessary 
definitions and then the stability theorems. 

Suppose that the equations of perturbed motion are 

x*3dX/&=X(t,x), X(&O)=0 I2.4) 

Here x = (tl, . . ., 5,) E I?“; X (t, x) = (X, (t, x), . . ., X, (1, x)) is a vector function defined, con- 
tinuous and Lipschitzian with respect to x in a domain 

G (t, x) = {t, x : t E It,, w), 11 x 11 = (2.2) 

It is known that the family of integral curves of Eqs.(2.1) belongs to the variety M 

defined by the equalities 

F, (t, x) = 0, r = 1, 2, . . . , m, F, (t, 0) = 0 (2.3) 

where F,(t,x) are continuous and continuously differentiable with respect to x and t,andtheir 
total derivative with respect to t along trajectories of system (2.1) vanishes. 

Let us assume that the solution x = x(t; t,, I@) of system (2.1) with constraints (2.3) 
and intiial conditions x(tO; t,, x0) =x0 is defined for all 
solution x ss 0 

t>O for which //XII,< H. The 
corresponds to unperturbed motion of system (2.1) and is a member of M (2.3). 

Consider the real functions V(t,r) (V(t,O)= 0) defined, continuous and having con- 
tinuous partial derivatives tWJ~?t,W/hi(i = 1,2,...,n) in the domain G (2.21, as well as 
their total derivatives v'(t,x) with respect to time along trajectories of system (2.1), 

(2.4) 

Definition 2.1. A function V(t,x) is said to be semidefinite on a manifold M (2.3) if 
its non-zero values on M are all of the same sign. 

Definition 2.2. A function W(X) not explicitly dependent on t is said to be positive- 
definite on a manifold M (2.3) if it is non-negative at every point of M and vanishes if and 
only if x = 0. 

Definition 2.3, A function v (t, x1 is said to be positive-definite on a manifold M 
(2.3) if there exists a function W(x), not explicitly dependent on t, which is positive- 
definite on M and 

v (6 x1 > w (x) (2.51 

Definition 2.4. A function V&x) is said to have an infinitesimal upper limit on a 
manifold (2.3) if, for any 
holds on MI 

e>O, one can find 6>0 such that the following condition 

I V (G xl I< e, if 11x116:6, t>o 

Definition 2.5. A function V&x) is said to have an infinitely large lower limit on 
a manifold M (2.3) if, for any number A >O, there exists a number B>O such that the 
following condition holds on M: 

IV(kx)l>A, if llxll>B, t>o 

The following proposition, due to Lyapunov, wasoriginally stated as a corollary to his 
stability theorem /l/: 

Theorem 2.1. If there exists a function VU. x1 which is positive-definite on a 
manifold M (2.31, and whose derivative T&X) along trajectories of system (2.1) is negative- 
semidefinite on M or P=O on M, then the unperturbed motion is stable on PI. 

Theorem 2.2. If there exists a function v(f,s) which is positive-definite and has an 
infinitesimal upper limit on M (2.31, and moreover its derivative r((t,x) is negative-definite 
on M, then the unperturbed motion is asymptotically stable on M. 

Theorem 2.3. If the assumptions of Theorem 2.2 hold on the manifold M (2.3) and the 
function V(f,x) also has an infinitely large lower limit on M, #en the unperturbed motion 
is asymptotically stable in the large on M. 

This statement, for a domain G, is due to krasovskii /5/. 
Other stability theorems carry over to the case under consideration. The proofs are 

practically the same, expect that one should bear in mind that the motion of the representative 
point of the system takes place on a manifold M (2.3). 
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3. We will now derive the sufficient conditions for the motion of polynomial systems on 
a manifold M (1.2) to be stable. Suppose that the perturbed motions of the system are 
described by equations of the form 

where CBi,...i, are real numbers, h, m integers, the coordinates x1, . . . . 2, satisfy Eqs.Cl.21 

and the following conditions hold: 

~(3.2) 

Throughout the sequel these conditions will be. assumed to be valid. 
We shall find conditions linking the coefficients C&...i, and &...is (1.2), under 

which the unperturbed motion on the manifold M (1.2) is asymptotically stable in the large. 
This will be done using Theorem 2.2, 

The Lyapunov function will be sought in the set of negative-definite functions 

V(X)=-_f(~Xb’)(Xld~i,,..c)) (3.3) 
a=1 r=, 

where XP (x, &,...i,) is a multilinear form of degree r with real constant coefficients 
da<l..,it fa =: I, 2, . .., iV; ix, - . ., i, = f, - + .* n), forming a non-singular (NX N) matrix, e.g., an 
upper triangular matrix with non-zero diagonal elements, and k is an integer. 

The total derivative of the function v(z) (3.3) with respect to t along trajectories of 
system (3.1.) is a sum of forms of type (1.1): 

0.4) 

where q = k i- h -- 1 and the coefficients Ail...t are determined by reducing like terms after 

scalar multiplication of the vector (aV/ax,, . . ..~Vl&.) by the vector (I,‘, . . ..x.‘); they equal 
the sums of the appropriate products of the coefficients dai,...i, and Csil...ig of (3.3) and (3.11, 
respectively. 

Theorem 1.1 yields conditions forthe derivative V'to be positive-definite on the manifold 
H (1.2). Hence we arrive at the following assertion. 

Theorem 3.1. A sufficient condition for the unperturbed motion of system (3.1) to be 
asymptotically stable in the large on the manifold M (1.2) is that there exist real numbers 

b, ail satisfying the recurrence relations (1.11) and condition (1.121, where the coefficients 

cijv b,* are determined from Eqs.Cl.6) and (1.91, respectively. 
We now consider a linear system. System (3.1) with h = 1 is a system of linear 

ferential equations with constant coefficients: 

Eqs.Cl.2) with p = 1 determine linear manifoldsikf,: 

The function (3.3) with k = 1, N= n; is a negative-definite q.f.: 

dif- 

(3.5) 

(3.6) 

(3.Y) 

Theorem 3.2. The conditions of Theorem 3.1 with N= n are necessary and sufficient 
for the linear system (3.5) to be asymptotically stable on linear manifolds (3.6). 

Proof. Necessity. Suppose thatthelinear system (3.5) is asymptotically stable under 
conditions (3.6). It follows from Lyapunov's theorem - the existence of a Lyapunov q.f. for 
asymptotically stable linear systems - that the total derivative of the function (3.7) along 
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trajectories of system (3.5) is positive-definite. Then the q.f. 

(3.8) 

is positive-definite on the linear manifolds (3.6). 
A criterion for this q.f. to be positive- or negative-definite is provided by formula 

(1.11) and inequalities (1.12). 

Sufficiency. Suppose there exist numbers h,all is indicated in the theorem, satisfying 
(1.11) and (1.12). Then /4/ the q.f. P(x) is positive-definite. Hence it follows that 
P(x)= v‘, the total derivative of the q.f, V(x) (3.7) along trajectories of system (3.51 
is positive-definite on the linear manifolds (3.6). By Theorem 2.2, this implies that system 
(3.5) is asymptotically stable on the linear manifolds (3.6). 

Example. We shall show that the solution x:0 of the system 

21' = --221z1 + 2+= - 21,s - 2x& (3.2) 
22' = z, - 4 + 2.0 + Z,Z* 

is asymptotically stable on the manifold M 

F1(% I*) = Z, + Z*'= 0 (3.10) 

Since the total derivative of F,(zl,zn) with respect to time is zero, the integral curves 
of system (3.8) lie on the manifold J$. 

To solve the problem, we make use of Theorem 3.1. Consider the Lyapunov function 

V = -'/I 1(4+1 + &G + (~~~)'l 

where alI, hn, c are arbitrary real numbers. 
We evaluate the total derivative v' of this function with respect to t along trajectories 

of system (3.8) and construct the function 

Q (x) = V' + PFI = 2% $2 a2 8 1 1 I + 2 (&*-I- d&r) *& + (2dn' - 
d&,) @G + (-24,' + 4&r - d,f - d,,*) ~12, + 24&r& - 

(3.11) 

(2d~& + ai,* + &a') +P - &,+2-t (dnd,, - art - &'f Z,Z, + 
(G t ds*%) =I + A' (R + 2,)' 

A mapping taking Q(x) into a q.f. is 

WI = 214, if, = xl', Ir = q, 1yI = z* 

This mapping takes Q(x) into the q-f. 

(3.12) 

Equating the functions Q(x) and P(Y), substituting the values of ~~,~~,~,~~, from (3.12) 
and comparing coefficients of like terms, we obtain 

Now, using the recurrence relations (1.111, we compute the numbers "U and check the 
validity of inequalities (1.12). The result is 

al1 = =1a = i, 01*=0~= -'I,. 0,. fi 'I*, (t,* = Y, 
an = oIll = 2, ou = -'I,. du = (I/,) 1/37j, 5 - 'I*. 

Thus the conditions of Theorem 3.1 are satisfied. The solution x=0 is therefore 
asymptotically stable in the large on the manifold (3.10). 
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